Graphical Models over Multiple Strings
نویسندگان
چکیده
We study graphical modeling in the case of stringvalued random variables. Whereas a weighted finite-state transducer can model the probabilistic relationship between two strings, we are interested in building up joint models of three or more strings. This is needed for inflectional paradigms in morphology, cognate modeling or language reconstruction, and multiple-string alignment. We propose a Markov Random Field in which each factor (potential function) is a weighted finite-state machine, typically a transducer that evaluates the relationship between just two of the strings. The full joint distribution is then a product of these factors. Though decoding is actually undecidable in general, we can still do efficient joint inference using approximate belief propagation; the necessary computations and messages are all finitestate. We demonstrate the methods by jointly predicting morphological forms.
منابع مشابه
Dual Decomposition Inference for Graphical Models over Strings
We investigate dual decomposition for joint MAP inference of many strings. Given an arbitrary graphical model, we decompose it into small acyclic sub-models, whose MAP configurations can be found by finite-state composition and dynamic programming. We force the solutions of these subproblems to agree on overlapping variables, by tuning Lagrange multipliers for an adaptively expanding set of var...
متن کاملPenalized Expectation Propagation for Graphical Models over Strings
We present penalized expectation propagation (PEP), a novel algorithm for approximate inference in graphical models. Expectation propagation is a variant of loopy belief propagation that keeps messages tractable by projecting them back into a given family of functions. Our extension, PEP, uses a structuredsparsity penalty to encourage simple messages, thus balancing speed and accuracy. We speci...
متن کاملA note on probabilistic models over strings: the linear algebra approach.
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-...
متن کاملNeural Graphical Models over Strings for Principal Parts Morphological Paradigm Completion
Many of the world’s languages contain an abundance of inflected forms for each lexeme. A major task in processing such languages is predicting these inflected forms. We develop a novel statistical model for the problem, drawing on graphical modeling techniques and recent advances in deep learning. We derive a Metropolis-Hastings algorithm to jointly decode the model. Our Bayesian network draws ...
متن کاملAn Overview of Dynamic Graphical Models
A graphical model consists of a graph G = (V ,E) and a set of properties that determine a family of probability distributions. There are many different types of graphs and properties, each determining a family. It is common to be able to develop algorithms that work for all members of the family by considering only a graph and its properties. Thus, solving difficult problems (such as deriving a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009